Monthly Archives: June 2014

Top 10 Cardiology articles of the week (23.6.14-29.6.14)

Top cardiology publications of the week

The below is given a list of top 10 cardiology articles which are clinically relevant and have a potential to influence practice

1. Role of Noninvasive Testing in the Clinical Evaluation of Women With Suspected Ischemic         Heart Disease: A Consensus Statement From the American Heart Association

2. Efficacy and Safety of Rivaroxaban Compared with Warfarin among Elderly Patients with        Nonvalvular Atrial Fibrillation in the ROCKET AF Trial

3. Atrial Fibrillation in Patients with Cryptogenic Stroke

4. Cryptogenic Stroke and Underlying Atrial Fibrillation

5.  STARTS-2 Long-Term Survival With Oral Sildenafil Monotherapy in Treatment-Naive                    Pediatric Pulmonary Arterial Hypertension

6.  Haemodynamic-guided fluid administration for the prevention of contrast-induced                 acute kidney injury: the POSEIDON randomised controlled trial

7. Effect of Evolocumab or Ezetimibe Added to Moderate- or High-Intensity Statin Therapy        on LDL-C Lowering in Patients With Hypercholesterolemia The LAPLACE-2 Randomized          Clinical Trial

8. Prognostic Value of Echocardiography in Normotensive Patients With Acute Pulmonary          Embolism

9.  First human experience of thermal arterial closure

10.  Clinical Profile and Prognostic Value of Anemia at the Time of Admission and                                Discharge Among Patients Hospitalized for Heart Failure With Reduced Ejection                           Fraction Findings From the EVEREST Trial

Antidepressants use in pregnancy and risk of cardiac malformation

Various reports have been published about the association of anti- depressant use in first trimester of pregnancy and resultant cardiac malformations.
Depression is seen in 10-15% of pregnant females. Reports have suggested that paroxetin is associated with right ventricular outflow tract obstruction and sertaline to be associated with ventricular septal defects.

This present large study shows that there is no increase in cardiac malformation with antidepressant use.

Source:
N Engl J Med 2014;370:2397-407.

Bionic Pancreas in Type 1 Diabetes

The study concluded as compared with an insulin pump, a wearable, automated, bihormonal, bionic pancreas improved mean glycemic levels, with less frequent hypoglycemic episodes, among both adults and adolescents with type 1 diabetes mellitus.

Read more at:

Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes — NEJM.

Implantable cardioverter defibrillator (ICD) – the others

Implantable cardioverter defibrillator (ICD) – the others

New ACC/AHA/HRS Expert consensus document for implantable cardioverter defibrillator (ICD) implantation in patients who are excluded or not well represented
in clinical trials.

A guideline has been published for ICD implantation. This new document is a good attempt at helping cardiologists in deciding about ICD.
There are some good points about the document.

Overview of the guideline:

1. The doument considers the published studies in ICD and makes recommendations.
2. Since the guideline considers only patients who are excluded or not well represented in clinical trials, there is no class of recommendations or level of evidence.
Rather there are categories like recommended, not recommended, can be done etc
3. Patients have been divided into different populations and recommendations are made for each patient population.

The broad categories considered are:

1. ICD Implantation in the Context of an Abnormal Troponin that Is Not Due to a Myocardial Infarction
2. ICD Implantation Within 40 Days of a Myocardial Infarction
3. ICD Implantation Within 90 Days of Revascularization
4. ICD Implantation <9 Months from the Initial Diagnosis of Nonischemic Cardiomyopathy

We will discuss the recommendations in each category

1. ICD Implantation in the Context of an Abnormal Troponin that Is Not Due to a Myocardial Infarction

First group of patients are those having elevated troponin levels but not fulfilling the  definition of MI (see other causes of elevated troponin e.g.kidney disease,
acute pulmonary embolus, heart failure, myocarditis, chest trauma, or tachyarrhythmia)and satisfying standard ICD indications for primary and
secondary prevention. ICD is recommended is such patients.
The idea is to define whether the elevated cardiac markers are due to MI or not. If not due to MI then go for ICD implatation early and no need to wait
for 40 days, like in a post MI setting.

2. ICD Implantation Within 40 Days of a Myocardial Infarction

 

1-Implantation of an ICD within the first 40 days following acute MI in patients with                       preexisting systolic ventricular dysfunction (who would have qualified for a
primary prevention ICD) is not recommended.
2-In patients who, within 40 days of an MI, require nonelective permanent pacing, who               also would meet primary prevention criteria for implantation of an ICD, and recovery of       left ventricular function is uncertain or not expected, implantation of an ICD  is                          recommended.
The basis of such recommendations has been explained by the writing group
“This reflects the fact that implantation of
a pacemaker or ICD is associated with some risk, especially
infection. If the likelihood that a patient requiring PPM implantation
early post-MI will ultimately require a second
procedure to extract the PPM and leads and replace it with
an ICD system 40 days later, it would seem inappropriate
not to implant an ICD rather than a PPM.”
3-Patients within 40 days of an MI who subsequently present sustained or hemodynamically significant ventricular tachyarrhythmias.

In this scenario the following recommendations are made
(i)In patients who, within 40 days of an MI, develop sustained (or hemodynamically significant) ventricular tachyarrhythmias >48 hours after an MI and
in the absence of ongoing ischemia, implantation of an ICD is recommended.

(ii)In patients who, within 40 days of an MI, develop sustained (or hemodynamically significant) VT >48 hours after an MI that can be treated by ablation,
implantation of an ICD can be useful.

(iii)In patients who, within 40 days of an MI, develop sustained (or hemodynamically significant) ventricular tachyarrhythmias where there is
clear evidence of an ischemic etiology with coronary anatomy amenable to revascularization (and appropriately treated), implantation
of an ICD is not recommended.
4- Patients within 40 days of MI who present with syncope that is thought to be due to ventricular arrhythmia – implantation of an ICD can be done.
In this recommendation quite a liberal one as there is no need to document ventricular arrhythmia. ICD can be done for suspected ventricular arrhythmia ( on the
basis of clinical history, documented NSVT or EP study). There are no studies that have specifically addressed whether ICD implantation is beneficial  in the setting of syncope thought to be due to a ventricular tachyarrhythmia in the first 40 days after MI. However, the consensus of the writing group is that syncope in the setting of a recent MI is a potentially serious issue, and ICD implantation can be useful if syncope is thought to be due to a ventricular tachyarrhythmia (by clinical history, documented NSVT, or EP study), regardless of timing in relationship to an MI (either <40 days or >40 days after MI).
5- Elective ICD replacement for battery depletion can be done in first 40 days after MI (in patients who have been previously implanted with ICD).
6- ICD implantation in patients within 40 days of an MI who have been listed for heart transplant or implanted with a left ventricular assist device is not recommended.

3. ICD Implantation Within 90 Days of Revascularization.

The ICD indications can be primary and secondary or patients requiring permanent pacing
1-ICD is recommended for primary prevention within 90 days of revascularization
a. In patients who have indication for ICD implantation for primary prevention of sudden cardiac death,and who have undergone revascularization
that is unlikely to result in an improvement in LVEF >0.35, and who are not within 40 days after an acute MI.
2-ICD is recommended for secondary prevention within 90 days of revascularization
a. In patients with abnormal left ventricular function and previous indication for ICD for            secondary prevention of sudden cardiac death (resuscitated from cardiac arrest due to        ventricular tachyarrhythmia) and have abnormal left ventricular function,
implantation of an ICD is recommended.
b. In patients with normal left ventricular function and previous indication for ICD for                  secondary prevention of sudden cardiac death  (resuscitated from cardiac arrest due to        ventricular tachyarrhythmia) that is unlikely related to myocardial ischemia/injury
c. ICD not indicated in patients whose cardiac arrest or VT/VF was due to acute myocardial        ischemia or injury.
3-ICD recommendations for patients with indication for permanent pacemaker

ICD is recommended in patients with indication for permanent  pacemaker + indication for ICD.
This indication is likely to come-up for further discussion in view of recent developments. The FDA has approved Medtronic CRT-D and CRT devices for patients with AV-block,NYHA I,II, III heart failure and LVEF<50% (based on data from BLOCK-HF trial)(http://www.medscape.com/viewarticle/823485).
So many of the patients with the above indication for ICD will receive CRT-D.

4-ICD is recommended in patients who develop  sustained VT/VF not related to myocardial ischemia ,syncope, patients needing pulse generator replacement, patients listed for heart transplant or implanted with ventricular assist devices, who are not within 40 days of acute myocardial infarction

4. ICD Implantation <9 Months from the Initial Diagnosis of Nonischemic Cardiomyopathy

ICD recommended in:
1-Implantation of an ICD for primary prevention is not recommended within the first 3 months after initial diagnosis of NICM.
2-If recovery of left ventricular function is unlikely, implantation of an ICD for primary prevention can be useful between 3 and 9 months after initial diagnosis of NICM.

3-ICD is indicated in patients having sustained VT/VF, syncope, indication for permanent pacing, listed for heart transplant, implanted with ventricular assist devices

Indications for putting an atrial lead:

1. In patients with symptomatic sinus node dysfunction, an atrial lead is recommended.
2. In patients with sinus bradycardia and/or AV conduction disturbances limiting the use and/or up-titration of necessary beta-blocker or other negative chronotropic drug therapy, an atrial lead is recommended.
3. In patients with sinus rhythm who have a documented second- or third-degree AV block, but who are not otherwise candidates for cardiac resynchronization therapy, an atrial lead is recommended.
4. In patients with bradycardia-induced or pause-dependent ventricular tachyarrhythmia (such as patients with long QT syndrome and torsades de pointes) an atrial lead can be useful.
5. In patients with a documented history of atrial arrhythmias (but not in permanent atrial fibrillation), an atrial lead may be considered.
6. In patients with hypertrophic cardiomyopathy and a significant resting or provocable left ventricular outflow tract gradient, an atrial lead may be considered.

Atrial lead not indicated in:

1. In patients with no documented history of atrial arrhythmias who have no other reason for requiring an atrial lead, an atrial lead is not recommended.
2. In patients with permanent or longstanding persistent atrial fibrillation in whom efforts to restore or maintain sinus rhythm are not planned, an atrial lead is not recommended.
3. In patients with conditions likely to result in VF (rather than monomorphic or polymorphic VT) without a bradycardia-induced or pause-dependent mechanism of
initiation and no other indication for an atrial lead, an atrial lead is not recommended. Conditions likely to result in VF – idiopathic ventricular fibrillation, Brugada syndrome, catecholaminergic polymorphous ventricular tachycardia, and short QT syndrome

This article adequately covers patients who really need an ICD, but have been excluded from trials. I have made a simplified version of the document which is easy to
understand. Your comments and questions are welcome

 

 

Note:

1. The diagnostic criteria for acute MI, established by the joint ESC/ACC/AHA/WHF Task  Force, are the following:

An appropriate rise and/or fall in cardiac biomarkers with at
least one value above the 99th percentile upper reference level, together with evidence of myocardial ischemia and with at least ONE of the following:
 1. Electrocardiographic evidence of new ischemia (ST
segment shift or development of left bundle branch
block [LBBB])
2.  Evolution of pathologic Q waves on the electrocardiogram
3.  Imaging evidence of new regional wall motion abnormality
or new loss of viable myocardium
4.  Ischemic symptoms
(J Am Coll Cardiol 2012;60:1581–98.)
2. BLOCK HF trial (N Engl J Med 2013;368:1585-93)